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AN ~ISY~~TRIC A~ALO~UE OF THE KE~YSH-S~V PROBLEMS 

S.YU. BELYAEV 

An axisymmetric harmonic problem is considered for a half-space on whose 
boundary there is any number of cirular concentric lines separating 
boundary conditions of the 1st and 2nd kinds. A method is given for 
constructing an effective solution of the problem with different relations 
between the geometric parameters. The problem of the joint action of 
ring and circular dies on an elastic half-space is taken as an example. 
The problem was solved earlier /l, 2/ by methods which are effective when 
the lines dividing the boundary conditions are remote from one another. 

1. Formulation of the problem. Let s be one of the sets 

and let T be the corresponding closed set. Let c[%) be the space of continuous functions 
which are given in f and decrease at infinity (if s' is an unbounded set) like r-h(h>O,rET), 
and let c* [g] be the subspace of c(Z) in which the functions decrease at infinity at least 
as fast as r-lA. 

We wish to find the function u(r,z) which is harmonic in the domain r > 0, 2 > 0 (r, e 
are cylindrical coordinates) and which satisfies in the z = 0 plane the mixed boundary 
conditions 

and the conditions 

lim I/r-_ <oo, <oo 
r-o*+0 z=4 r-4 P.2) 

and is decreasing at infinity. Conditions (1.2) ensure that the solution of the problem /3/ 
is unique and henceforth will be omitted for brevity. 

We introduce into the space c ISI, C* 61 the norm I/s/I = max,=;; Ix(r)l. We denote by 

vtj (f, g), w,j (g, f) the functions v(r, Z), w (r, Z), harmonic in the domain r>O, z>O, which are 
decreasing at infinity and satisfy the boundary conditions 

v Il_o = f (r), r E t&j, c%~lc%&.~ = g (r), r E D&j 

Here and below,& is the complement of the set s up to the semi-axis, i.e., Ds- [O, 

m)\s. 
Notice that, since Q,ll = Dzon, Z,” i= D%,“, we have 

u (f, 4 = 4” (f, g) = WO” (a f) (1.3) 

Let us emphasize that, in the notation r&j&g), w,j(g, f), the P and g are functional 
arguments. Strictly, the arguments of these functions are r and 2. 

Problem (1.11, (1.2) has been studied in detail in the case when there are just two 
lines separating the boundary conditions /4, f/. We can therefore solve the general case if 
we can find a method for reducing it to the case of just two lines when there are different 
relations between the parameters. Our approach below is based on two methods of reducing 
the problem to two other problems with fewer lines of separation of the boundary conditions. 

2. First method. We shall seek the solution uXa@,g) of our problem as 

vz= (f, 9) = VI- (a, p) -i- L+1 (B* $1 

*Prikl.Matem.dlekhan..53,~,4~-53.~9~? 
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where the functions a and fi are given by the system 

a (r) = f (r) - &+I 0% 4 l*=ls r E km (2.2) 

B 09 = f w - vim (a. pf LoI r E E+I 

and functions 1, p are chosen so that 
rfr)-+~(rf=g@f, rE%?” (2.3) 

obviously, if a, fi, F, 2 satisfy conditions (2.21, (2.31, Eq.(2.1) becomes an identity. 
Thus, on solving system f2.2), we arrive at two independent problems (the determination 

of 
cond:%?)' 

$,+,@,I), given the functions a, p, f3, 1) with fewer lines separating the boundary 
. 

Theorem 1. If p E C* [DSa,"], 1 E c* [DQ~,], then system (2.2) has a unique solution in the 

class of continuous functions, which can be obtained by the method of successive approximations 
with a convergence coefficient not exceeding b,la,,,+l. 

Proof. obviously, if a ~c[$~], p E c*[DO,'"l, p EC [%,+rl, 1 EC* [oQ&+rl, then ~“‘(a, 

I.4 I,mJ E c li%ll &+I (B* 2) Lo e c m,“l. Consequently, linear operators A, M, 3, L, exist which 

respectively map c [Ci~ml into c r~~+rl, c* IDQ~~l into ClP$+rl, C G3Z+J into C IRm19 C loQ",+~l into 

cI~rm], such that 

Using the last 

We eliminate p 

We estimate the 
v"'(I, 0) is harmonic 

then, by the maximum 
function) 

4” A I.4 La = Aa -I- Mp, &+I fB, 0 Lo = BP -I- Lb (2.4) 
relations, we can rewrite system (2.2) as 

a=F,-I@, p =ti F, - Aa; F1 = f - Ll, Fz = f - My (2.5) 

from the first of Eqs.(2.5) by using the second equation. We find 

a=F+BAa, F’=F,-BBF, WV 

norm of the operator T=BA. For this, we note that, if the function 
in the domain r&O, z>o, and satisfies the conditions 

~m(&O)t~=~, r<L -$Jm(~,U)Iz~.,=O, r>&, 

principle for harmonic functions we have (x is a monotonically decreasing 

~m(i,o)~~~~(i,~)~~~, rER+I 

&+~(x,0)L <,<(a,+~), rE52;m; xEc[R+J 

Taking into account that /3/ 

we find 

Ae = Vl" 0, O).lz=o < vm 0, 0) I-0 = x*9 BX’ d x* (am+3 (2.7) 

where e is the element of c[?&"'] which takes unity values for all values of the argument. 
Notice that, given any s>O (x~cS~~~]) Tx>O. Hence 11 Tl] =maxs,,Te. For the proof, it is 

1. 

sufficient to note that, if Ilz/<1, then 

T(x-ef<O, Tz)O 

lTzi-Te’{-T(x+e)<O, Tx<O 

Using inequalities (2.71, we obtain 

[ T U = maxa,mBAe < maxp,tniW < x’ (a,+d Q W%+~ 

We now use Banach's fixed point theorem. The theorem is proved. 

3. Second method. Along with (2.11, we can write the required harmonic function 
vr" (f, g) = won (g, j) in the form 

wo" (&n = wo"l-lh* $4 + WP (69 9) (3.1) 

if the functions tf, p, 6, q satisfy the conditions 
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a 
S fr) = 6% (4 - y+y- wo m-’ (q, 0) /*+, I’ E %= 

Gi(r)=g(r)- $ w,“(o, q) Jz=o, Gs (r) = g (r) - ;; d?-’ (0, p) Iz=o 

P (7) + q (4 = f W, r E DE,” (3.3) 

We can regard Eq.(3.3) as a constraint on the choice of the functions p,q, while (3.2) 
is a system of equations for finding the functions q, 5. 

Theorem 2. If G1~~[~or'C1l, G%Ec* lx,"], then system (3.2) has a unqiue solution in the 

class of continuous functions, which can ge obtained by the method of successive approximations 
with convergence coefficient not exceeding (a,&$'. 

Consequently, there are linear operators 2 and Y which respectively map C*[~,"linto CI~O*~I 

and C[e,m-il into c* [E,"], such that 

On eliminating the function c from the first of Eqs.(3.2) by means of the second, and 
introducing the notation 

t = rq, R = z (G, + Yc,), Xc = TZY (vi) 
‘c (r) = bd - P, y (r) = (bma - +)-I 

we obtain the equation E = R + Xt. Since 2, y E C iZ0 - m-ll~ to prove the theorem it suffices 
to show that 11 X 11 < (adbAg+ 

We note that, if r, E c IO, a,], zS EC* Id, 0 = lb,, m), zl> 0, -2, >O, then 

o<--& w*-~(~~~O)~~~~-~W~-~(=~,O)I.~, rE%P (3.4) 

0 < - -& w,n (a, 0) &+ < - $ w, (5a, 0) lzxO, r E %i’ (3.5) 

where w"'-' (q, 0), w,,, (q, 0) axe harmonic in the domain r>o,e>o, and satisfy the conditions 

The left-hand sides of (3.4), (3.5) may be proved in the same way as in /6, p.223/. 
To prove the right-hand side of (3.4), we only need to observe that the functions s = w~~~(x~, 

0) - w-1 (zt, 0) satisfy the conditions 

a~la2J~~~ < 0, r E (0, am), sIzsO = 0, r E (a,, a) 
The right-hand side of (3.5) is proved in a similar way. PIoting that /3/ 

we have 

x =~,,m-l, a = a,,,, b = b, 

The theorem is proved. 
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Notice that the conditions of the theorem are satisfied if the functions p and (I are 
chosen e.g., in the following way: 

p E c DIZ,Y, p E c* DZmnl; p (r) = 0, r > ra 

q (r) = 0, r < rl; rlr ra E (a,, &J, rl < rs 

4. Construction of an effective solution. The above methods enable us to 
reduce a problem with 2n lines dividing the boundary conditions to two problems with 2m and 
2(n -m) dividing lines respectively. One of the above methods can again be applied to 
each of the resulting problems. By continuing this process , we can in the long run arrive 
at a problem with two lines dividing the boundary conditions. Realization of the process 
requires the solution of system (2.2) or (3.2), depending on the method chosen at a given step. 
The convergence coefficient of the iterations when solving system (2.2) by the method of 
successive approximations does not exceed bmla,,,+l, or when solving system (3.2), (a$b,,,)“. 
In view of this, the following algorithm can be stated for choosing the method of solution: 

if bilal+l =G (a##, we must use the first method, putting m = i, and otherwise, the second 
method, putting m =j. Here, i denotes the value of k at which min (bklak+,) is reached, and 

j the value of k at which min (a&J is reached. In both cases, 1: runs over all possible 
values except for those at which the ratio b,lak+l or aklbk is zero. 

As an example, consider the axisyunnetric problem on the joint indentation of ring and 
circular dies into an elastic half-space. We assume that the dies are rigid, have plane bases, 
and indent without friction. We also assume that the surface of the half-space external to 
the dies is free from stresses. 

Using the Pankovich-Neiber relations, we reduce the problem to finding the harmonic 
function B(T,S) which satisfies the boundary conditions 

Y I_, = G(1 - v)-lek, r E (ak, a,), k = 1, 2, a, = 0 (4.1) 

aularlz+ = 0, r= (4, +) U (b,, =) 

where ek are the die displacements, G is the shift modulus,v is Poisson's ratio. In accord- 
ance with our above notation (8jk is the Kronecker delta) 

G a 
“‘i-_v 2 ejula Cfj, 0); fj (r) = ajkt ak <r<bk (4.2) 

j=r 

Let the distance between the dies be large (the ratio b,/a, is small). Using the first 
method of reduction to two problems with fewer lines dividing the boundary conditions, we 
write the required functions in the form y*(fj,O)= Q~j190)+vSt~~t,0)1 where the functions fjk 

are given by system (2.2) with m= 1, n = 2, a=fil, p=fi,, f=fi,Z=O, p= 0. This system can be 
solved by successive approximations, with a convergence coefficient not exceeding 41%. Thus 
our method works well in the present case. 

The functions IQ(~~~,O),V,*~~~,O) are the solutions of problems with one and two lines 
dividing the boundary conditions. 0n writing these solutions in the form /7/ 

and rewriting SyStem (2.2) With rSSpSCt t0 the fUnCtiOnS $a, ojk, qy,, we obtain 

(4.3) 

(4.4) 
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6 = 2r(-l/ 1 t* - r’ 1, s, = ~/f/1 a* - t* 1, 7, = ~/r/l b’ - T* 1 

On solving system (4.4), we obtain with the aid of (4.2) and (4.3) the solution of our 
problem. 

It can be shown that system (4.4) has a unique solution in the class of continuous 
functions, which can be obtained by successive approximations, with convergence coefficient 
not exceeding mar[b&,, (a,/b,)% The presence of the coefficient (a&b&* is linked to the fact 
that the problem of finding vSm@l,,O) reduces to a Fredholm integral equation of the 2nd kind, 
in the solution of which by successive approximation the convergence coefficient of the 
iterations does not exceed (&b# *. (*BELYAYEV S.YU., The mixed problem on the deformation of 
and elastic half-space with any number of circular concentric lines separating the boundary 
conditions, Candidate Dissertion, LIP im. M.I. Kalinin, Leningrad, 1983.). 

The most important characteristics of the problem are expressible in termsofthesolution 
of system (4.4). For example, consider the numerical connection of displacements Q with the 
forces Pk acting on the dies. This connection is given by the cofficients Pkj: 

P, = Gc (1 - v)-1 i pkjjej (4.5) 
j=1 

OD 

s 
tlfJQ (t) dt (4.5) 

9 

Now let the distance between the dies be small (b&a, si). Using the second method of 
reduction to two problems with fewer lines separating the boundary conditions, we obtain 

wjs I j Pia (t) co8 ltdt f j yig (t) co8 kt dt 
B c 

where the functions aji, $jk, vjyjr are found from the system 

ejl ff 1 i= t9 
E 
bjx - &j* - ~~~~j~~‘~‘~] t t<a 

t3 

This system has a unique solution in the class of continuous functions, which can be 
found by successive approximations with convergence coefficient not exceeding mar f(or/b&‘,t/& 

The coefficients p&j in (4.5) are expressible in terms of the solution of system (4.7) by 

(I - rl) ‘lVjl(‘) 8 + 1 t1 - tl) VjS tt) &] 
e 

(4.8) 
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The results of computations from (4.6), (4.8) with b,=i,a,=O,ti and different +a bda, 

are shown in Fig.1, where 

Fig.1 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

The coefficients **j are introduced so as to isolate the 
1Ogarithmic singularity of j?kj in the neighbourhood of the 
point b&= f. However. it is the coefficients pgj that have 
a physical meaning. Using Fig.1 and relations (4.91, we can 
show that pn increases as the distance between the dies 
decreases (and has a logarithmic singularity at b&=i). This 
behaviour of pl, as a function of b,/o, is explained by the fact 
that, apart from a constant factor, it is equal to the force 
PI that has to be applied to the inner die in order for it to 
sink to unit depth in the half-space when the normal displace- 
ments under the outer die are kept equal to zero. 

The coefficient pu has a similar meaning. The difference 
in the behaviour of pu and pe is that, as b&z, + 0 , we have 
pn- 0,while Pn-um~t >O. The difference is due to the decrease 
in the base area of the inner die to zero as bJa,-.O. 

As regards the coefficient Alr=Pns it characterizes the 
mutual influence of the dies on one another and behaves 
qualitatively in the same way as pur but takes negative values. 
This is because, gives the same force Plr the displacement e, 
is greater if q>O. 
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